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The objective of this study was to assess whether carboxymethyl cellulose- (CMC-) based hydrogel containing BioC (biphasic
calcium phosphate (BCP); tricalcium phosphate (TCP) : hydroxyapatite (Hap) = 70 : 30) and bone morphogenic protein-2 (BMP-
2) led to greater bone formation than CMC-based hydrogel containing BioC without BMP-2. In order to demonstrate bone
formation at 4 and 8 weeks, plain radiographs, microcomputed tomography (micro-CT) evaluation, and histological studies were
performed after implantation of all hybrid materials on an 8mm defect of the right tibia in rats. The plain radiographs and micro-
CT analyses revealed that CMC/BioC/BMP-2 (0.5mg) led to much greater mineralization at 4 and 8 weeks than did CMC/BioC or
CMC/Bio/BMP-2 (0.1mg). Likewise, bone formation and bone remodeling studies revealed that CMC/BioC/BMP-2 (0.5mg) led to
a significantly greater amount of bone formation and bone remodeling at 4 and 8 weeks than did CMC/BioC or CMC/BioC/BMP-2
(0.1mg). Histological studies revealed that mineralized bone tissue was present around the whole circumference of the defect site
withCMC/BioC/BMP-2 (0.5mg) but notwithCMC/BioCorCMC/BioC/BMP-2 (0.1mg) at 4 and 8weeks.These results suggest that
CMC/BioC/BMP-2 hybrid materials induced greater bone formation than CMC/BioC hybrid materials. Thus, CMC/BioC/BMP-2
hybrid materials may be used as an injectable substrate to regenerate bone defects.

1. Introduction

More than a million people in the United States and other
countries require bone graft to regenerate bone defects caused
by fracture, trauma, or tumor resection [1, 2]. Autograft has
been used widely as bone graft due to its excellent osteoin-
ductive and osteoconductive properties [2]. Allograft has also
been used as a bone substitute because it prevents donor
site morbidity [2]. However, both autograft and allograft
have disadvantages, such as limited availability, donor site

morbidity, transmission of infectious diseases, and immune-
rejection reactions [2, 3]. To address these shortcomings, a
new approach to bone graft has been developed.

Hydroxyapatite (HAp) and calcium phosphate (CaP)
have been successfully used as bone graft materials for the
regeneration of bone defects due to their physical and chem-
ical properties and their structural similarity to natural bone.
CaP-based materials have been approved by the Food and
Drug Administration (FDA) for clinical applications in the
fields of dental and orthopedic surgery. CaP-based materials
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possess bioactive, biocompatible, and osteoconductive prop-
erties [4]. Although CaP-based materials have been widely
used in a clinical setting, they have no osteogenic or osteoin-
ductive properties; however, such properties are needed for
the repair and regeneration of bone defects. The osteoinduc-
tive properties of natural bone are the result of bone mor-
phogenic proteins (BMPs) and osteogenic proteins that exist
in the extracellular matrix (ECM) [5–9]. Thus, in order to
produce more effective bone regeneration, CaP-based mate-
rials combined with osteoinductive materials are required.

BMPs have osteoinductive properties. Among BMP fam-
ily members, BMP-2 is one of the most osteoinductive
growth factors. Previous studies have demonstrated that
BMP-2 can induce mesenchymal stem cells (MSCs) to dif-
ferentiate into osteoblast lineages and regenerate bone [10–
13]. In addition, previous studies have shown that BMP-2
stimulates osteogenic markers such as osteopontin, osteo-
calcin, bone sialoprotein, and alkaline phosphatase (ALP)
during osteogenic differentiation in vitro [14, 15]. Recently,
to enhance osteoblast function and bone formation, BMP-2-
based delivery systems have been developed. Previous studies
have reported that BMP-2 combined with collagen gels,
sponges, scaffolds, hyaluronic acid, dextran, chitosan, andfib-
rin scaffolds induces the regeneration of bone defects [16–21].

Carboxymethyl cellulose (CMC) has natural biodegrad-
able and biocompatible properties [22, 23] and has been used
as a biomedical membrane [24, 25]. In an in vitro study,
Leone et al. demonstrated that amidated carboxymethyl
cellulose (CMCA) hydrogel is a potential filler for cartilage
defects [26]. Moreover, a recent report demonstrated that a
CMC/HAp hybrid hydrogel inducedmore osteoblast-like cell
proliferation, osteogenic markers including Runx2, ALP, and
collagen type I, and mineralization than did a CMC-based
hydrogel without HAp [27].

On the basis of these results, we hypothesized that a
CMC-based hydrogel containing BioC (biphasic calcium
phosphate (BCP); tricalcium phosphate (TCP): hydroxyap-
atite (Hap) = 70 : 30) and BMP-2 would promote greater bone
formation in a rat tibial defect model than would a CMC-
based hydrogel containing BioC without BMP-2.

2. Materials and Methods

2.1. Release Kinetics of BMP-2 fromCMC/BioC/BMP-2Hybrid
Materials. The cellulosematerial (CMC-based hydrogel con-
taining BioC) has been integrated with two different BMP-
2 solutions (0.1mg and 0.5mg; Cowellmedi Co., Busan,
Korea) with a simple soaking manner. Released BMP-2
from CMC/BioC/BMP-2 (0.1mg) and CMC/Bio-C/BMP-2
(0.5mg) hybrid materials was evaluated with an enzyme-
linked immunosorbent assay (ELISA) in accordance with
the manufacturer’s instructions by using a microplate reader
(Bio-Rad, Hercules, CA, USA) at a wavelength of 450 nm.
In brief, CMC/BioC/BMP-2 (0.1mg) and CMC/BioC/BMP-
2 (0.5mg) blended materials were, respectively, soaked in a
membrane bag (MWCO: 300,000), 15mL tube with 1mL of
phosphate buffer saline (PBS) (Gibco BRL, Rockville, MD,
USA). The tube was incubated at 37∘C with gentle shaking at
100 rpm. At predetermined time intervals of 1, 3, 5, and 10 hr

and 1, 3, 5, 7, 14, 21, and 28 days, supernatants were collected
and replaced with fresh PBS for 28 days. The absorbance
of the collected samples was determined with a microplate
reader.

2.2. Animal Study

2.2.1. Rat Treatments. Eight-week-old Sprague-Dawley rats
(Orient Bio Co., Seongnam City, Korea) were used for
the in vivo evaluation of CMC/BioC, CMC/BioC/BMP-2
(0.1mg), and CMC/BioC/BMP-2 (0.5mg) groups.The exper-
imental protocol was approved by the Institutional Animal
Care and Use Committee of the Korea University Medical
Center (KUIACUC-2012-128). Experimental animals were
divided into three groups: group I (𝑛 = 4) was implanted
with CMC/BioC, group II (𝑛 = 4) was implanted with
CMC/BioC/BMP-2 (0.1mg), and group III (𝑛 = 4) was
implanted with CMC/BioC/BMP-2 (0.5mg). The rats were
anesthetized with tiletamine/zolazepam (50mg/kg; Zoletil)
and xylazine (10mg/kg; Rompun). After shaving the right
tibia, the periosteum and soft tissue were carefully retracted
and two 0.9 mm K-wires (Zimmer, Warsaw, IN) were fixed
to the right tibia. K-wires were clamped bilaterally with the
author’s own-designed external fixator (U&I, Gyeonggi-do,
Korea). An 8mm defect of the right tibia was created with
a cutting burr, and 150𝜇L of CMC/BioC, CMC/BioC/BMP-
2 (0.1mg), or CMC/BioC/BMP-2 (0.5mg) was injected into
the right tibia defect, as appropriate, respectively. The sub-
cutaneous tissue and skin were sutured with absorbable 4-
0 vicryl (Ethicon, Somerville, NJ, USA) (Figure 1). The rats
were allowed free movement in cages after recovery from
anesthesia. One rat in group I had been dead for two days
after treatment, so another rat has been treated with the same
manners with others in group I.

2.2.2. Bone Formation Analyses

Plain Radiographs. At 4 and 8 weeks after injection, samples
were fixed in 3.7% paraformaldehyde solution. Radiographs
of the specimens were obtained with a plain radiograph
apparatus (In VivoDXS 4000 Pro System, CarestreamHealth,
Rochester, NY, USA) at 43KVP, 2 mA, and 44 cm film-
radiation beam distance for a 1.5 s exposure time.

Microcomputed Tomography (Micro-CT) Evaluation. At pre-
determined time intervals of 4 and 8 weeks, bone volume
was obtained with a micro-CT system (Albira II Imaging
System, Carestream Health). The CT system was operated
at a voltage of 40 kV, and a current of 250 𝜇A was used
with a nominal resolution of 9 𝜇m/pixel. Image analysis was
performedwith a bone analyzer (Molecular ImagingAnalysis
software; Carestream Health Inc., Woodbridge, VA, USA).

Histological Study. The specimens were retrieved at 4 and
8 weeks. After decalcification, the samples were embedded
in paraffin. The tissues were cross-sectioned at an 8 𝜇m
thickness in the longitudinal parallel direction and stained
with hematoxylin and eosin (H&E) and Masson’s trichrome
staining. The cytoplasm of osteoblasts and bone formation
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Figure 1: Serial photographs show the surgical procedure. After shaving, the periosteum and soft tissue were carefully retracted and two
0.9mmK-wires (Zimmer,Warsaw, IN)were fixed to the tibia. K-wireswere clampedbilaterallywith the author’s own-designed external fixator
(U&I, Gyeonggi-do, Korea). An 8mm defect of the right tibia was created with a cutting burr, and 150𝜇L of CMC/BioC, CMC/BioC/BMP-2
(0.1mg), or CMC/BioC/BMP-2 (0.5mg) was injected into the defect, respectively.

were assessed with H&E staining. Mineralized bone matrix
and osteoid were evaluated by Masson’s trichrome staining.

2.3. Statistical Analysis. Data are presented as mean ± stan-
dard deviation. Statistical comparisons were carried out via
one-way analysis of variance using Systat software (Chicago,
IL, USA). Differences were considered statistically significant
at ∗𝑃 < 0.05 and ∗∗𝑃 < 0.001.

3. Results

3.1. In Vitro BMP-2 Release Study. On the first day, the
released amounts of BMP-2 were 71.55 ± 2.24 ng with
CMC/BioC/BMP-2 (0.1mg) and 83.75 ± 1.12 ng with
CMC/Bio-C/BMP-2 (0.5mg) (Figure 2). At 28 days, the
released amounts of BMP-2 were 114.82 ± 12.55 ng with
CMC/BioC/BMP-2 (0.1mg) and 151.76 ± 9.57 ng with
CMC/Bio-C/BMP-2 (0.5mg).

3.2. Plain Radiographs and Micro-CT Analysis. At 4 weeks
after surgery, the plain radiographs revealed no mineral-
ization at the defect area for the CMC/BioC group but
slight mineralization for the CMC/BioC/BMP-2 (0.1mg)
and CMC/BioC/BMP-2 (0.5mg) groups (Figure 3). At 8
weeks after surgery, both the CMC/BioC/BMP-2 (0.1mg) and
CMC/BioC/BMP-2 (0.5mg) groups showedmuchmoremin-
eralization than did the CMC/BioC group. All three groups
showed much greater mineralization at 8 weeks than at 4
weeks. The micro-CT images revealed that the defect areas
for both CMC/BioC/BMP-2 (0.1mg) and CMC/BioC/BMP-2
(0.5mg) showed slight mineralization while those for CMC/
BioC did not show mineralization at 4 weeks (Figure 4).
In addition, more mineralization was visible in the CMC/
BioC/BMP-2 (0.5mg) group than in the CMC/BioC or
CMC/BioC/BMP-2 (0.1mg) group at 8 weeks. Micro-CT
revealed bone formation and bone remodeling. As shown
in Figure 5(a), bone formation at the defect area was sig-
nificantly greater for the CMC/BioC/BMP-2 (0.5mg) group
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Figure 2: In vitro release profile of BMP-2 from CMC/BioC/BMP-2
hybrid materials. BMP-2 (e) from CMC/BioC/BMP-2 (0.1mg) and
BMP-2 (I) from CMC/BioC/BMP-2 (0.5mg) hybrid materials. The
error bars represent mean ± SD (𝑛 = 5). These experiments were
repeated three times.

at 4 weeks than for the CMC/BioC and CMC/BioC/BMP-2
(0.1mg) groups ( ∗∗𝑃 < 0.001). A significant difference in
bone formation was observed between the CMC/BioC/BMP-
2 group (0.5mg) and CMC/BioC group ( ∗∗𝑃 < 0.001)
and between the CMC/BioC/BMP-2 group (0.5mg) and the
CMC/BioC/BMP-2 (0.1mg) group ( ∗𝑃 < 0.05) at 8 weeks. At
4 weeks, there was a statistically significant difference in bone
remodeling of the defect area between theCMC/BioC/BMP-2
group (0.5mg) and theCMC/BioC group ( ∗𝑃 < 0.05), as well
as between the CMC/BioC/BMP-2 group (0.5mg) and the
CMC/BioC/BMP-2 (0.1mg) group ( ∗𝑃 < 0.05) (Figure 5(b)).
In addition, a significantly greater amount of bone remod-
eling occurred in the CMC/BioC/BMP-2 (0.5mg) group
than either the CMC/BioC group ( ∗∗𝑃 < 0.001) or the
CMC/BioC/BMP-2 (0.1mg) group at 8 weeks ( ∗𝑃 < 0.05).
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Figure 3: Plain radiographs of (a) CMC/BioC, (b) CMC/BioC/BMP-2 (0.1mg), and (c) CMC/BioC/BMP-2 (0.5mg) at 4 weeks after
implantation onto the tibial defects. (d) CMC/BioC, (e) CMC/BioC/BMP-2 (0.1mg), and (f) CMC/BioC/BMP-2 (0.5mg) at 8 weeks after
implantation onto the tibial defects. There was no mineralization at the defect site after the implantation of CMC/BioC, whereas both
CMC/BioC/BMP-2 (0.1mg) and CMC/BioC/BMP-2 (0.5mg) experienced slight mineralization at 4 weeks. At 8 weeks after surgery, both
the CMC/BioC/BMP-2 (0.1mg) and CMC/BioC/BMP-2 (0.5mg) groups experienced much greater mineralization than did the CMC/BioC
group.

3.3. Histological Study. The H&E staining analysis revealed
that the tissue of the defect area showed negligible miner-
alized bone tissue for the CMC/BioC group and partially
mineralized bone tissue for the CMC/BioC/BMP-2 (0.1mg)
group. However, the tissue of the defect area showed a
much greater amount of mineralized bone tissue for the
CMC/BioC/BMP-2 (0.5mg) group than for the CMC/BioC
or CMC/BioC/BMP-2 (0.1mg) group at 4 weeks (Figures
6(a)–6(c)). In all three groups, a much greater amount of
mineralized bone tissue was observed around the defect at
8 weeks after surgery than at 4 weeks after surgery. Moreover,
mineralized bone tissue was observed at the whole circum-
ference of the defect site in the CMC/BioC/BMP-2 (0.5mg)
group but not in the CMC/BioC or CMC/BioC/BMP-2
(0.1mg) group at 8 weeks (Figures 6(d)–6(f)). The Masson’s
trichrome staining analysis revealed that general woven bone
tissue covered the defects in the CMC/BioC group, whereas
at least some mineralized bone tissue was present in the
CMC/BioC/BMP-2 (0.1mg) andCMC/BioC/BMP-2 (0.5mg)
groups at 4 weeks (Figures 7(a)–7(c)). At 8 weeks, much of
the mineralized bone tissue on the defect site was visible in
the CMC/BioC/BMP-2 (0.5mg) group, but this amount was

much lower in the CMC/BioC orCMC/BioC/BMP-2 (0.1mg)
group (Figures 7(d)–7(f)).

4. Discussion

Osteoconductive materials, such as CaP-based materials,
allow a framework for vascular invasion and cellular infil-
tration but do not induce mesenchymal cells to differentiate
into mature bone cells. Osteoinductive materials, including
growth factors such as BMPs, basic fibroblast growth factor
(bFGF), platelet-derived growth factor (PDGF), and vascular
endothelial growth factor (VEGF), induce new bone forma-
tion but they do not provide a framework for vascular inva-
sion and cellular infiltration.Thus, osteoconductivematerials
combined with osteoinductive materials may be ideal for
bone regeneration.

The objective of this study was to assess whether a CMC-
based hydrogel containingBioC andBMP-2 induced a greater
amount of new bone formation than did a CMC-based
hydrogel containing BioC without BMP-2. The results from
the plain radiographs and micro-CT demonstrated that bone
formation was significantly greater in the CMC/BioC/BMP-2
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Figure 4: Micro-CT images of (a) CMC/BioC, (b) CMC/BioC/BMP-2 (0.1mg), and (c) CMC/BioC/BMP-2 (0.5mg) at 4 weeks after
implantation onto the tibial defects. (d) CMC/BioC, (e) CMC/BioC/BMP-2 (0.1mg), and (f) CMC/BioC/BMP-2 (0.5mg) at 8 weeks after
implantation onto the tibial defects. The micro-CT images revealed slight mineralization at the defect site for both the CMC/BioC/BMP-2
(0.1mg) and CMC/BioC/BMP-2 (0.5mg) groups but no mineralization for the CMC/BioC group at 4 weeks. At 8 weeks, mineralization was
much more extensive in the CMC/BioC/BMP-2 (0.5mg) group than in the CMC/BioC or CMC/BioC/BMP-2 (0.1mg) group at 8 weeks.
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Figure 5: (a) Bone formation and (b) bone remodeling for the CMC/BioC, CMC/BioC/BMP-2 (0.1mg), and CMC/BioC/BMP-2 (0.5mg)
groups at 4 and 8 weeks. The values represent mean ± standard deviation (𝑛 = 12) ( ∗𝑃 < 0.05 and ∗∗𝑃 < 0.001).
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Figure 6:H&E staining of the rat tibial defect after implantation of (a) CMC/BioC, (b) CMC/BioC/BMP-2 (0.1mg), and (c) CMC/BioC/BMP-
2 (0.5mg) at 4 weeks. (d) CMC/BioC, (e) CMC/BioC/BMP-2 (0.1mg), and (f) CMC/BioC/BMP-2 (0.5mg) at 8 weeks. The tissue of the
defect area showed a much greater amount of mineralized bone tissue for the CMC/BioC/BMP-2 (0.5mg) group than for the CMC/BioC
or CMC/BioC/BMP-2 (0.1mg) group at 4 weeks. Mineralized bone tissue was observed at the whole circumference of the defect site in the
CMC/BioC/BMP-2 (0.5mg) group but not in the CMC/BioC or CMC/BioC/BMP-2 (0.1mg) group at 8 weeks (scale bar = 50 𝜇m).
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Figure 7: Masson’s trichrome staining of the rat tibial defect after implantation of (a) CMC/BioC, (b) CMC/BioC/BMP-2 (0.1mg), and (c)
CMC/BioC/BMP-2 (0.5mg) at 4 weeks. (d) CMC/BioC, (e) CMC/BioC/BMP-2 (0.1mg), and (f) CMC/BioC/BMP-2 (0.5mg) at 8 weeks.
General woven bone tissue (blue color) covered the defects in the CMC/BioC group, whereas at least some mineralized bone tissue (red
color) was present in the CMC/BioC/BMP-2 (0.1mg) andCMC/BioC/BMP-2 (0.5mg) groups at 4 weeks. At 8 weeks, much of themineralized
bone tissue on the defect site was visible in the CMC/BioC/BMP-2 (0.5mg) group, but this amount was much lower in the CMC/BioC or
CMC/BioC/BMP-2 (0.1mg) group (scale bar = 50 𝜇m).



BioMed Research International 7

(0.5mg) group than in the CMC/BioC or CMC/BioC/BMP-
2 (0.1mg) group at 4 and 8 weeks. Thus, these findings
demonstrate that CMC/BioC/BMP-2 (0.5mg) induces rapid
bone formation at an earlier stage than does CMC/BioC
or CMC/BioC/BMP-2 (0.1mg). As expected from the plain
radiographs and micro-CT data, the histological study data
revealed that the CMC/BioC/BMP-2 (0.5mg) group had
more mineralized bone tissue at the defect site than did
the CMC/BioC and CMC/BioC/BMP-2 (0.1mg) groups at 4
weeks. In all groups, a greater amount ofmineralized bone tis-
sue was observed at the defect site at 8 weeks than at 4 weeks.
The entire defect area was covered with mineralized bone
tissue at 8weeks in theCMC/BioC/BMP-2 (0.5mg) group but
not in the CMC/BioC or CMC/BioC/BMP-2 (0.1mg) group.

These results are consistent with those of previous studies.
Lin et al. [28] reported that BMP-2-immobilized heparin-
bound demineralized bone matrix (HC-DBM) showed
higher alkaline phosphatase (ALP) activity (2 weeks), more
calcium deposition (4 and 8 weeks), and more bone for-
mation than that of controls after subcutaneous implanta-
tion in rats. Zhao et al. [29] demonstrated that a BMP-2-
absorbed monoclonal antibodies conjugated DBM (MAbs-
DBM) group experienced greater osteogenic differentiation
in an in vitro study and greater ectopic bone formation
in an in vivo study than the control group. In a previ-
ous study, we found that woven bone covered the whole
circumference more often in a BMP-2-coated tricalcium
phosphate/hydroxyapatite group than in a tricalcium phos-
phate/hydroxyapatite group in a rat model of femoral dis-
traction osteogenesis [30, 31]. Kim et al. [32] and Park et al.
[33] reported that BMP-2-coated biphasic calcium phosphate
(BCP) granules or blocks supported significantly greater bone
formation than BCP granules or blocks in a rat model of
calvarial defects. Moreover, Choi et al. [34] showed that
implantation of BMP-2/BCP granules onto 6 mm diameter
defects of the maxillary sinus of rabbits led to enhanced
bone formation compared with the control group. Finally,
a recent report demonstrated that new bone formation at
a bone defect in the middle ear after mastoid surgery was
greater in the presence of BMP-2/BCP scaffolds [35].

Our results suggest that CMC/BioC/BMP-2 hybrid mate-
rials induce greater bone formation at an earlier stage through
release of BMP-2 thanCMC/BioChybridmaterials.However,
our in vivo study has some limitations. For example, long-
term evaluation greater than 8 weeks is needed to compare
the quality and architecture of new bone formation between
control and implanted groups. More comprehensive analyses
that include the histology and angiogenesis of new bone and
biomechanical testing are needed. Finally, the effects of long-
term release of BMP-2 require further investigation.

In conclusion, CMC/BioC/BMP-2 (0.5mg) hybrid mate-
rials implanted in a rat tibial defect model led to greater
bone formation than did CMC/BioC and CMC/BioC/BMP-
2 (0.1mg) hybrid materials. Thus, CMC/BioC/BMP-2 hybrid
materials may be useful in an injectable substrate for the
clinical application of the regeneration of bone defects in the
orthopedic field.
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